

December 12, 2005

Project No. 617

Ms. Peggy Carr Sonoma County Department of Health Services Environmental Health Division 475 Aviation Boulevard, Suite 220 Santa Rosa, California 95403

Groundwater Monitoring Report, August and November 2005 18155 Sonoma Highway Boyes Hot Springs, California

Dear Ms. Carr:

This report presents the results of the groundwater monitoring performed on August 4, 2005 and November 10, 2005 by Brunsing Associates, Inc. (BAI) at 18155 Sonoma Highway, Boyes Hot Springs, California (Plates 1 and 2). Groundwater sampling was performed in monitoring wells MW-2 and MW-4 and the samples were analyzed only for the compound 1,2-dichloroethane (1,2-DCA), as requested in the SCDHS-EHD letter dated November 3, 2003.

Site History

Standard Oil built and occupied a gasoline service station with underground fuel tanks in the center of the property in the mid-1940's. The site was used as a service station for an auto dealership/repair shop until its closure in 1965, according to a Van Houten Consultants, Inc. (Van Houten) report titled, "Discharge Evaluation for Removal of Buried Fuel Tanks," dated December 22, 1986. In the December 1986 report by Van Houten, the Site Plan indicates that the site initially contained six underground storage tanks: four fuel tanks (three 2,000-gallon tanks and one 5,500-gallon tank), a 500-gallon waste oil tank, and a concrete septic tank. The service station pump island was located on the west side of the site, adjacent to Sonoma Highway. According to Ms. Millie Gallo, a pump station was also present on the easterly side of the site, primarily for family use. In December 1986, Van Houten reported that the fuel tanks had not been in use for 20 years, and that the waste oil tank had not been used for six years.

The fuel tanks were emptied of liquid on May 21, 1986 by Fuel Oil Polishing Company-Bay Area of Sonoma, California, as stated in Van Houten's report titled "Quarterly Ground Water Sampling and Downgradient Hydrogeologic Investigation," dated April 30, 1993. Two soil borings were drilled on June 5, 1986 to the northeast and southwest of the fuel tanks; the soil samples were analyzed by Anatec Laboratories. The analytical results indicated that the soil

P.O. Box 588, Windsor, CA 95492 Phone: (707) 838-3027 Fax: (707) 838-4420

Ms. Peggy Carr December 12, 2005 Page 2

samples from boring 1 contained none of the analytes. The soil samples collected from boring 2 contained total petroleum hydrocarbons (TPH) as gasoline concentrations at 530 parts per million (ppm) at 7 feet and 14 ppm at 12 feet.

The tanks were removed from two excavations on October 27, 1986 by Hammond Construction of Sonoma, California. The tanks were hauled away from the site by H&H Ship Service of San Francisco, California. Samples collected from the volcanic bedrock below the gasoline tanks ranged in concentrations from 18 to 390 ppm of TPH as gasoline. Volcanic bedrock samples collected from below the waste oil tank were reported to contain 22 to 760 ppm of "total heavy hydrocarbons".

Composite samples from the excavated materials contained concentrations ranging from 440 to 890 ppm of TPH as gasoline. The excavated materials were stockpiled on site and were fenced and aerated for approximately 4 months. According to Van Houten's April 30, 1993 report, the material was returned to the excavation, upon approval by Mark Sullivan of the SCDHS-EHD, and additional clean fill was imported to bring the excavation up to grade on April 25, 1987.

Van Houten prepared an "Initial Hydrogeologic Investigation" report, dated April 15, 1991. The report provides a well survey for the area, a discussion of the drilling of borings 1 and 2, and the installation of groundwater monitoring wells MW-1 through MW-4. Well construction details are also summarized in Table 3.

Soil samples collected during the drilling of the borings and well boreholes were analyzed for TPH as gasoline, TPH as diesel, TPH as motor oil, non polar oil and grease, benzene, toluene, ethylbenzene, and xylenes (BTEX), chlorinated hydrocarbons, organic lead, and for five metals (nickel, cadmium, chromium, lead and zinc). The results of the soil analyses indicated that petroleum hydrocarbon contamination in soils existed at monitoring well MW-1 at six and eleven feet below ground surface (bgs), and in boring 1 at 5 feet bgs. No chlorinated hydrocarbons or metals greater than the total threshold limit concentrations were reported.

Quarterly groundwater monitoring and monthly groundwater elevation measurements were initiated at the site in March 1992; an initial groundwater monitoring round was also performed in March 1991 after the well installations. The results of the groundwater monitoring are provided in Van Houten's report titled, "Quarterly Groundwater Sampling and Downgradient Hydrogeologic Investigation." The groundwater analytical results reported between March 1991 and March 1993 indicate that the highest levels of petroleum hydrocarbons were occurring in monitoring well MW-1, with 400 parts per billion (ppb) of TPH as gasoline as the highest concentration.

In April 1993, approximately 700 cubic yards of contaminated soil were removed from the site. The area of the excavation was along the west side of the property, in the vicinity of monitoring well MW-1, which was abandoned. The depth of the soil excavation ranged from 20 feet at the northeast corner to 9.5 feet along the west wall to 5 feet at the south end of the excavation.

Ms. Peggy Carr December 12, 2005 Page 3

Details of the soil excavation are provided in Van Houten's report titled, "Soil Excavation," dated June 14, 1993.

One groundwater monitoring event was completed in September 1993, after removal of the excavated soil. The next groundwater monitoring event occurred in January 1999, with monitoring continuing to the present. In December 2001, BAI drilled four soil borings (BB-1 through BB-4). The results of the drilling activities are discussed in BAI's report titled, "Soil and Groundwater Investigation," dated July 17, 2002.

Exploratory borings BB-7 and BB-8, and boring BB-9 were drilled on October 14, 2004 and October 15, 2004. The results of the drilling are presented in BAI's "Further Site Investigation Report", dated December 27, 2004.

Summaries of the groundwater elevation and analytical results since BAI has been monitoring the site are included in Tables 1 and 2, respectively. The well construction details are summarized in Table 3.

Groundwater Monitoring

Wells MW-2 and MW-4 were purged and sampled, and depths to groundwater were measured on August 4, 2005 and November 10, 2005. Monitoring well MW-3 is no longer part of the required sampling program, and was not sampled. Monitoring well MW-3 was not accessible for water level measurements. BAI's groundwater sampling protocol and field reports are included in Appendix A. The groundwater samples were submitted to BACE Analytical and Field Services and analyzed for 1,2-DCA using EPA Test Method 8260. The analytical laboratory reports for the August and November 2005 groundwater samples are included in Appendix B.

Groundwater Monitoring Results

The depths to groundwater and historical groundwater elevations starting in 1999 are presented in Table 1. The groundwater flow direction and gradient during the August and November 2005 sampling events could not be calculated because of insufficient data. Since 1999, the groundwater flow direction has ranged from northwest to southwest.

In August and November 2005, the compound 1,2-DCA was reported in the groundwater samples collected from well MW-2 at concentrations of 1.32 and 1.74 micrograms per liter (μ g/l), respectively. The compound 1,2-DCA was not reported in the MW-4 groundwater samples.

Ms. Peggy Carr December 12, 2005 Page 4

Discussion

The results of groundwater monitoring show that 1,2-DCA continues to be present in groundwater samples collected from well MW-2. The concentrations of 1,2-DCA from September 2002 through November 2005 have been generally stable, ranging from 1.32 to 1.81 μ g/l, with the exception of the September 2003 data that reported 2.76 μ g/l.

Since the November 2005 sampling event, no further action has been required by the SCDHS-EHD for the site. At this time, monitoring wells MW-2, MW-3, and MW-4 are scheduled to be abandoned on December 9, 2005.

If you have any questions regarding this report, please contact Diana Dickerson at (707) 838-3027.

DIANA M.DICKERSON No. 6013

Sincerely,

Steve Silva

Project Geologist

Diana M. Dickerson, P.G., R.E.A.

Principal Geologist

cc: Ms. Millie Gallo

Ms. Teri Gallo

Attachments

Table 1. Groundwater Elevation Data

Table 2. Groundwater Analytical Data For Wells

Table 3. Well Construction Details

Plate 1. Site Vicinity Map

Plate 2. Site Map

Appendix A. Monitoring Well Sampling Protocol and Field Logs

Appendix B. Analytical Laboratory Reports

TABLES

TABLE 1. GROUNDWATER ELEVATION DATA

18155 Sonoma Highway Boyes Hot Springs, California

Well Number	Date Measured	Top of Casing Elevation (Feet)	Depth to Groundwater (Feet below TOC)	Groundwater Elevation (Feet, MSL)	Groundwater Flow Direction and Gradient (ft/ft)
MW-2	1/8/1999	134.03	13.42	120.61	
MW-3	1/8/1999	141.09	19.19	121.90	Northwest
MW-4	1/8/1999	133.55	11.94	121.61	0.028
	5/11/1999	134.03	10.79	123.24	
MW-2	5/11/1999	141.09	16.64	124.45	Northwest
MW-3 MW-4	5/11/1999	133.55	9.75	123.80	0.019
			7.91	126.12	
MW-2	1/16/2002	134.03	12.82	128.27	Southwest
MW-3	1/16/2002	141.09	8.90	124.65	0.055
MW-4	1/16/2002	133.55			
MW-2	9/18/2002	134.03	25.64	108.39	_
MW-3	9/18/2002	141.09	dry		
MW-4	9/18/2002	133.55	22.40	111.15	
MW-2	12/12/2002	134.03	23.05	110.98	
MW-3	12/12/2002	141.09	dry		_
MW-4	12/12/2002	133.55	15.46	118.09	
	3/13/2003	134.03	10.42	123.61	
MW-2	3/13/2003	141.09	15.13	125.96	Southwest
MW-3 MW-4	3/13/2003	133.55	10.91	122.64	0.041
IVI W -4			12.52	120.50	
MW-2	6/13/2003	134.03	13.53	120.96	Northwest
MW-3	6/13/2003	141.09	12.14	121.41	0.024
MW-4	6/13/2003	133.55			
MW-2	9/30/2003	134.03	24.74	109.29	_
MW-3	9/30/2003	141.09	dry	111.77	- -
MW-4	9/30/2003	133.55	21.78	111.77	
MW-2	3/5/2004	134.03	7.06	126.97	_
MW-3	3/5/2004	141.09	12.90	128.19	
MW-4 ⁽¹⁾	3/5/2004	133.55	8.56	124.99	
MW-2	8/23/2004	134.03	25.26	108.77	
MW-3 ⁽²⁾	8/23/2004	141.09	22.01	119.08	Northwest
MW-4	8/23/2004	133.55	22.32	111.23	0.129

TABLE 1. GROUNDWATER ELEVATION DATA

18155 Sonoma Highway Boyes Hot Springs, California

Well Number	Date Measured	Top of Casing Elevation (Feet)	Depth to Groundwater (Feet below TOC)	Groundwater Elevation (Feet, MSL)	Groundwater Flow Direction and Gradient (ft/ft)
MW-2	3/9/2005	134.03	6.79	127.24	<u> </u>
MW-3	3/9/2005	141.09	nm		
MW-4 ⁽¹⁾	3/9/2005	133.55	8.83	124.72	
MW-2	8/4/2005	134.03	15.65	118.38	
MW-3	8/4/2005	141.09	nm		<u>-</u>
MW-4	8/4/2005	133.55	16.41	117.14	
MW-2	11/10/2005	134.03	20.37	113.66	
MW-3	11/10/2005	141.09	nm		
MW-4	11/10/2005	133.55	21.70	111.85	

Cumulative data since BAI has been monitoring the site.

TOC = Top of casing surveyed to mean sea level by FitzGerald & Associates, 3/13/91 and 4/12/93.

ft/ft = Foot per foot.

MSL = Mean sea level.

nm = Not measured, well inaccessible.

⁽¹⁾ Water in well may not have stabilized, therefore no groundwater flow direction or gradient was calculated.

⁽²⁾ Water in well may not have stabilized.

TABLE 2. GROUNDWATER ANALYTICAL DATA FOR WELLS

18155 Sonoma Highway Boyes Hot Springs, California

	TPH as	TPH as		MTBE (2)	1,2-DCA (3)	Dissolved
Date			BTEX (1)	EPA 8260	EPA 8260	Zinc ⁽⁴⁾
1	~			(µg/l)	(μg/l)	(μg/l)
	<u> </u>			<1.0	3.45	29.3
				< 0.50	3.93	56.3
				<1.0	2.10	nr
				<1.0	1.74	nr
				<1.0	1.81	nr
				<1.0	1.59	nr
			1	<1.0	1.64	nr
				<1.0	2.76	nr
				nr	1.72	nr
				nr	1.76	nr
				nr	1.7	nr
				nr	1.32	nr
				nr	1.74	nr
11/10/2003				-10	<0.50	24.7
1/8/1999						67.7
5/11/1999	< 0.05	<0.05				
1/16/2002	< 0.05	nr				nr
3/13/2003	< 0.05	nr				nr
6/13/2003	<0.05	nr	< 0.50	<1.0	<0.50	nr
1/8/1000	<0.05	<0.05	<0.5	2.27	<0.50	47.6
			<0.5	<0.50	< 0.50	38.0
	l		.1	<1.0	< 0.50	nr
			<0.50	<1.0	< 0.50	nr
			<0.50	<1.0	<0.50	nr
	L	 		<1.0	<0.50	nr
	·	- 	<0.50	<1.0	< 0.50	nr
	<u></u>		<0.50	<1.0	< 0.50	nr
			nr	nr	<0.50	nr
			nr	nr	< 0.50	nr
			nr	nr	<0.50	nr
11/10/2005	nr	nr	nr	nr	<0.50	nr
	5/11/1999 1/16/2002 3/13/2003 6/13/2003 1/8/1999 5/11/1999 1/16/2002 9/18/2002 12/12/2002 3/13/2003 6/13/2003 9/30/2003 3/5/2004 3/9/2005 8/4/2005	Sampled (mg/l) 1/8/1999 <0.05	Date Sampled gasoline (mg/l) diesel (mg/l) 1/8/1999 <0.05	Date Sampled gasoline (mg/l) diesel (mg/l) BTEX (1) 1/8/1999 <0.05	Date Sampled gasoline (mg/l) diesel (mg/l) BTEX (1) EPA 8260 (µg/l) 1/8/1999 <0.05	Date Sampled gasoline (mg/l) diesel (mg/l) BTEX (1) (μg/l) EPA 8260 (μg/l) EPA 8260 (μg/l) 1/8/1999 <0.05

Cumulative data since BAI has been monitoring the site.

mg/l = Milligrams per liter.

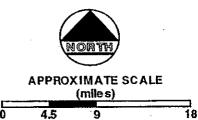
 $\mu g/l = Micrograms per liter.$

<= Not detected at specified laboratory reporting limit.

nr = Not requested.

- (1) = Benzene, toluene, ethylbenzene, and xylenes.
- (2) = Methyl tertiary butyl ether.
- (3) = 1,2-dichloroethane. Other petroleum oxygenates and lead scavengers, through September 2003, analyzed using EPA Test Method 8260. Only those listed were detected.
- (4) = Dissolved cadmium, chromium, lead, and nickel were not detected when analyzed.

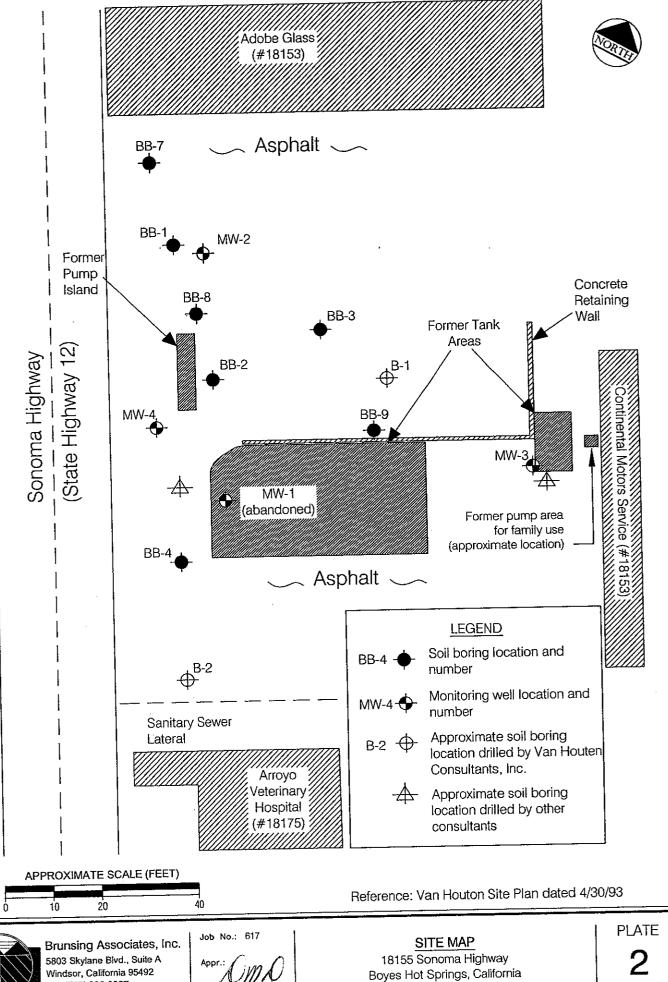
WELL CONSTRUCTION DETAILS 18155 Sonoma Highway Boyes Hot Springs, California


Well Condition	abandoned		existing)	existing		existing		
PVC Casing Elevation (MSL)			134.03	2011	141.09		133.55		
Screen Slot Size (inches)	0000	0.040	0000	0.040	0.00	20.0	0.00		
Casing Diameter (inches)	,	7	c	7	C	1	c	1	
Total Well Depth (feet)	ļ		İ	40		6.77	22	C7	
Screened Interval	(300)	18.5 to 33.5		20 to 40	7 00 1 2 01	17.5 to 77.5	4. 00	C7 01 C	
tal Borchole Depth		33.5		42		22.5		23	
Borehole To	(Inches)	~		~		∞		∞	
Installed By		Von Houten	vali moure	Van Houten	vall Hourdi	Van Houten	t day tab debri	10/19/1992 Van Houten	1 mr 2 2 mr
Date Installed		0/00/1001	7/79/1991	0/00/1001	7/70/1331	2/1/1001	3/1/17/1	10/10/1002	10/11/11/12
Well		, , , ,		C 133.7 %	7-MW	C 1337 A	C-WIM	N 4117 A	t AA TAI

MSL = Mean sea level

PLATES

Copyright 1995 by California State Automobile Association


Job No.: 617.003

Appr.: M##

Date: 05/13/03

SITE VICINITY MAP 18155 Sonoma Highway Boyes Hot Springs, California PLATE

1

Tel: (707) 838-3027

12/15/04 Dote:

APPENDIX A

Monitoring Well Sampling Protocol and Field Logs

Groundwater Sampling Protocol

Monitoring Wells

Prior to purging a monitoring well, groundwater levels are measured with a Solinst electric depth measurement device, or an interface probe, in all wells that are to be measured. At sites where petroleum hydrocarbons are possible contaminants, the well is checked for floating product using a clear bailer, a steel tape with water/oil paste, or an interface probe, during the initial sampling round. If floating product is measured during the initial sampling round or noted during subsequent sampling rounds, floating product measurements are continued.

After the water level and floating product measurements are complete, the monitoring well is purged until a minimum of three casing volumes of water are removed, water is relatively clear of sediment, and pH, conductivity, and temperature measurements of the water become relatively stabile. If the well is purged dry, groundwater samples are collected after the water level in the well recovers to at least 80 percent of the original water column measured in the well prior to sampling, or following a maximum recovery period of two hours. The well is purged using a factory-sealed, disposable, polyethylene bailer, a four-inch diameter submersible Grundfos pump, a two-inch diameter ES-40 purge pump, or a peristaltic pump. The purge water is stored on-site in clean, 55-gallon drums.

A groundwater sample is collected from each monitoring well following re-equilibration of the well after purging. The groundwater sample is collected using a factory-sealed disposable, polyethylene bailer with a sampling port, or a factory-sealed Teflon bailer. A factory provided attachment designed for use with volatile organic compounds (VOCs) is attached to the polyethylene bailer sampling port when collecting samples to be analyzed for VOCs. The groundwater sample is transferred from the bailer into sample container(s) that are obtained directly from the analytical laboratory.

The sample container(s) is labeled with a self-adhesive tag. The following information is included on the tag:

- Project number
- Sample number
- Date and time sample is collected
- Initials of sample collector(s).

Individual log sheets are maintained throughout the sampling operations. The following information is recorded:

- Sample number
- Date and time well sampled and purged
- Sampling location
- Types of sampling equipment used
- Name of sampler(s)
- Volume of water purged.

Following collection of the groundwater sample, the sample is immediately stored on blue ice in an appropriate container. A chain-of-custody form is completed with the following information:

- Date the sample was collected
- Sample number and the number of containers
- Analyses required
- Remarks including preservatives added and any special conditions.

The original copy of the chain-of-custody form accompanies the sample containers to a California-certified laboratory. A copy is retained by BAI and placed in company files.

Sampling equipment including thermometers, pH electrodes, and conductivity probes are cleaned both before and after their use at the site. The following cleaning procedures are used:

- Wash with a potable water and detergent solution or other solutions deemed appropriate
- Rinse with potable water
- Double-rinse with organic-free or deionized water
- Package and seal equipment in plastic bags or other appropriate containers to prevent contact with solvents, dust, or other contaminants.

In addition, the pumps are cleaned by pumping a potable water and detergent solution and deionized water through the system. Cleaning solutions are contained on-site in clean 55-gallon drums.

Domestic and Irrigation Wells

Groundwater samples collected from domestic or irrigation wells are collected from the spigot that is the closest to the well. Prior to collecting the sample, the spigot is allowed to flow for at least 5 minutes to purge the well. The sample is then collected directly into laboratory-supplied containers, sealed, labeled, and stored on blue ice in an appropriate container, as described above. A chain-of-custody form is completed and submitted with the samples to the analytical laboratory.

<__Yes __ _ _

FILE GOPY

Fi	EL	D	R	E	P	0	R	T
----	----	---	---	---	---	---	---	---

PAGE ___OF ___

JOB NO: 617.070 PROJECT:

PROJECT: 18155 SONOMA HUY, BOYES HOT SPRINGS, CA.

INITIAL: CDS

UST

Fund Site:

SUBJECT: GROUNDWATER SAMPLING

DATE: 8-4-05

PROJECT PHASE NUMBER: 04

VEHICLE USED: FOR F-150

.

Total Time: 7,00

End. Mileage: 553

Beg. Mileage: 173494

	TOTAL MILEAGE: 59
IME	DESCRIPTION OF WORK AND CONVERSATION RECORD.
0629	LOAD EQUIPMENT AND SUPPLIES.
0721	TOSITE.
0808	ARRIVE AT SITE, SET-UP FOR GROWNE WATER SAMPLINE
	MEASURED TWO REUNDS OF DISTANCE TO WATER AT WELLS MW-Z AND MW-4
	WELL MW-3 COULD NOT BE ACCESSED. IT IS LOCATED UNDER A CAR
	THAT COLLAND BE MOVED
	STORED PRESENTER IN DRUM LOCATED AT THE SOUTHEAST CORNER
	CLOSED WELLS AND MONUMENTS
	DECON SAMPLING EQUIPMENT.
	LOAD EQUIPMENT AND SUPPLIES.
	COMPLETED FIELD NOTES AND LOCKED SAMPLES ON CHAIN OF CUSTORY.
1129	LEAVE SITE.
1239	ARRIVE AF OFFICE. SUBMITTED SAMPLES FOR ANALYSIS
(0.00	UNLOAD EQUIPMENT AND SUPPLIES.
1323	FINISHED WITH WOOK. DRUM COUNT:
	Water = Î Devlpmt Water = Soil = Decon Water =

PROJECT: Gaus

PROJECT NUMBER: 617.070

INITIALS: CAG DATE: 8-11-20

INSTRUMEN	NT TYPE: ET	(WLP)		INITIALS: C	-DS DATE: 8-4-05
WELL NUMBER	DEPTH TO PRODUCT	DISTANCE TO WATER	TIME (24 HOUR)	EQUILIBRATED (CHECK FOR YES)	NOTES
MW-2	þ	15,64	08/5		COULD NOT BE ACCESSED
Mw-3 Mw-4	ø	16.41	0818		SOUTH NOT BE ALCOSED
Mw-2	þ	15.65	0826	<i>'</i>	
MW-3 MW-4	ø	16.41	0828	./	

BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

WELL SAMPLING

SHEET 3 OF 4

PROJECT:	GALLO					PROJECT NUMBER: 6 (7.076
,		PRECIP. IN LA	AST 5 DAYS:	1	WIND -	DATE: 8-4-0\$
			FINISHING T		ž	INITIALS: < DS
CALCULATI	ON OF PUR	GE VOLUME	·			G A
2" WELL	DEPTH: [40,00	- D.T.W. [15.65	= H20 COLUM	N: 24.35 X 0.5 = 12.18 L
4" WELL	DEPTH: [- D.T.W.		= H20 COLUM	N: X 2.0 = O
THEREFO	RE TOTAL	PURGE GA	LLONS EQUA	_S		· 12 S
			FIE	LD MEA	SUREMEN	<u>T S</u>
TIME	GALLONS REMOVED	р <u>Н</u>	CONDUCTIVITY	TEMP.		<u>OBSERVATIONS</u>
0849	1	6.50	40?	21.0	CLOURTB	NOWN NO ODOR
0900	6	6,48	394	21.1.	Tussio L	IVHT BOSON NOOSER SANDY
७२८५	12	6,38	398	21,2	TURBIC LIE	HT-BOOWN, NO ODOR, SANDY
SAMPLI	ING:		E ANALYSIS:	1,2-009		L GO DRY? No
WATER	LEVELS:	NOTES	<u>. </u>			
TIME	p.T.W.					
0979	21.85					
			·			
	 	<u> </u>		<u></u>		
	<u> </u>					

BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

WELL SAMPLING

SHEET 4 OF 4

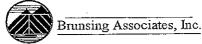
PROJECT:	GALLO					PROJECT NUMBER: 617.070
WELL# M	w-+ 1	PRECIP. IN LA	AST 5 DAYS: -	1	WIND ~	DATE: 8-4-05
			FINISHING T	IME: 0	7	INITIALS:
CALCULATI	ON OF PUR	GE VOLUME	Ī			G A
2" WELL	DEPTH:	23,00	- D.T.W.	16:41	= H20 COL	UMN: 6.59 X 0.5 = 3.30 L
			- D.T.W.			UMN: X 2.0 = O
	_	•	LLONS EQUA			3 S
	<u> </u>		FIE	LD MEA	SUREME	NTS
TIME	GALLONS REMOVED	pН	CONDUCTIVITY	TEMP.		<u>OBSERVATIONS</u>
0955	ı	7.15	344	20.4	CLEAR	NO OFFI
0957	2	7:05	343	20.3	ciego	NO 60002
1000	3	5,99	341	20,2	CLEAR	- NO ODOR
SAMPLI	NG:			1010		ELL GO DRY?
WATER	LEVELS:	NOTES:				
TIME	D.T.W.	 	·	·		
10:4	20.00	 		· · · · · · · · · · · · · · · · · · ·		
<u> </u>		 	<u></u>			
<u> </u>	-	 				
					·	
•		<u> </u>				

UST × Yes Fund Site:

FIELD REPORT

PAGE 1 OF 4 PROJECT: 18155 SONOMA HWY. , BOYES HOT SPRINGS , CA. Total Time: _

JOB NO: 617,070


INITIAL: ムロち

SUBJECT: GROSNOWATER SAMPLING

PROJECT PHASE NUMBER: 04 DATE: ((-10-05

End. Mileage:

	VEHICLE USED: FORD F-150	Beg. Mileage. 1760 17
		TOTAL MILEAGE: 57
TIME	DESCRIPTION OF WORK AND CONVERSATION RECORD:	
0642	LOAD EQUIPMENT AND SUPPLIES	
0723	TO SITE.	
0831	ARRIVE AT SITE, SET-UP FOR GROUNDWATER SAMI	PLING
	MEASURED TWO ROUNDS OF DISTANCE TO WATER AT W	&Tr2
	MW-Z AND MW-4.	
	WELL MW-3 COULD NOT BE ALLESSED, LOCATED UNDER A	CARTHAT
	COULD NOT BE MOVED.	
	PERFORMED SAMPLING ATWELLS MW-Z AND MW-4	
	STORED PURGENAMER IN DRUM LOCATED AT THE SOUTH	EAST
	CORNER OF THE PROPERTY.	
,	CLOSED WELLS AND MONUMENTS.	
	DECON SAMPLING EQUIPMENT	
	LOAD EQUIPMENT AND SUPPLIES.	
	COMPLETED FIELD NOTES AND LOUVED SAMPLES ON	CHAIN OT CONOFT.
	LEAVES (TE.	Da 45) 6
1236.	ARRIVE AT OFFICE; SUBMITTED SAMPLES FOR AN	DRUM COUNT:
12.2	A location of a living in the last of the	Water = 2- Devipmt Water =
1319 -	FINISHED WITH WORK.	Soil = Decon Water =
<u></u>	<u>L </u>	

PROJECT: LALLO

PROJECT NUMBER: しげ

INSTRUMENT TYPE: ET (WLP)

INITIALS: CDS DATE: 11-10-05

WELL	DEPTH TO	DISTANCE	TIME	EQUILIBRATED	
NUMBER	PRODUCT	TO WATER	(24 HOUR)	(CHECK FOR YES)	NOTES
MW-Z	M	20.38	0828		
MW-3	. Processing and the State		ىلادىلەرىنى <u>دىن بىرىنىدىنى</u> دى		COULD NOT BE ALLESSED
mw-4	0	21.71	0856		
MW-2	ø	20.37	<u>০৭০४</u>	<i>'</i>	
MW-3			Active and the second		
mw-4	ø	21.70	0907	V	
· · · — —					
., 					
			<u> </u>		
		<u> </u>			
	<u> </u>				

BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

WELL SAMPLING SHEET 3 OF 4

PROJECT:	b-Acre					PRØJECT NUMBER: 617
WELL# M	lw-2	PRECIP. IN I	.AST 5 DAYS:		WIND 🗸	DATE: (- (0 - 0 5
STARTING	F TIME: C	943	FINISHING 1	ГІМЕ: 103º	g.	INITIALS: C. S.
CALCULAT	ION OF PUR	RGE VOLUM	E	<u> </u>	······································	G
2" WELL	DEPTH:	40.00] - D.T.W.	20.37] = H20 COLUMI	N: 19.63 X 0.5 = 9.82 L
4" WELL	DEPTH:] - D,T.W.		= H20 COLUMI	N: X 2.0 = O
THEREFO	RE TOTAL	PURGE GA	ALLONS EQUA	LS		. 10 S
			FIE	LD ME	ASUREMENT	<u>Γ</u> <u>S</u>
TIME	GALLONS REMOVED	, р <u>Н</u>	CONDUCTIVITY	TEMP.		<u>OBSERVATIONS</u>
THAIT.	KEWOVED	<u> </u>	CONDUCTIVITI	11-1411-1		<u>opozitymiono</u>
1004	/	6.73	358	22./	TURBIO BRO	WN, NOODOR, SANGY
1013	5	6.84	340	21.3	TURBIDIAN	T BROWN, NO OPOR, SANDY
						· · · · · · · · · · · · · · · · · · ·
1224	10	6.73	338	20,9	TURBIOLILHT	BROWN, NO ODE, SANDY
<u> </u>		·				
			<u> </u>			
SAMPLI	NG:	SAMPLE	ANALYSIS:	1,2-DCA		
		SAI	MPĻE TIME:	1634] DID WELL	GO DRY? NG
WATER	LEVELS:	NOTES:				
TIME	D.T.W.					
1036	29.31.					
	<u> </u>					
· · ·						
		,				
<u> </u>				· · · · · · · · · · · · · · · · · · ·		
· · · · ·						
	<u> </u>	<u> </u>				

BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

WELL SAMPLING

SHEET 4 OF 4

PROJECT:	GALLO					PROJECT NUMBER: 617
WELL# M	w-4	PRECIP. IN L	AST 5 DAYS:		WIND ~	DATE: 11-10-05
STARTING	TIME: 6	7909	FINISHING T	ГIME: 09 4	12	INITIALS: CDS
CALCULAT	ION OF PUR	GE VOLUM	E			G
2" WELL	DEPTH:	23.00] - D.T.W.	21.70] = H20 COLUMN	1: 1.30 X 0.5 = 0.65 L
4" WELL	DEPTH:] - D.T.W.		= H20 COLUMN	l: X 2.0 = O
THEREFO	RE TOTAL	PURGE GA	ALLONS EQUA	LS		0.75 S
	<u></u>	·	FIE	LD MEA	ASUREMENT	Š
:	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			1	
TIME	GALLONS REMOVED	рН	CONDUCTIVITY	TEMP.		<u>OBSERVATIONS</u>
			-			
0916	0.25	7,05	305	18.4	acovoy Bas	WY , NOGDOR, SANDY
0920	0.50	7.15	293	19,3	TURBIO BO	ZOWN , NOODOR SANDY
0927	0.75	7,24	288	19.4	TUEBID BRO	MN NOSOOR, SANOY
		<u> </u>				
SAMPLII	NG:	SAMPLE	ANALYSIS:	1,2-DCA		
		SAI	MPLE TIME:	0933] DID WELL (GO DRY? No.
WATER	LEVELS:	NOTES:				
TIME	D.T.W.					
0937	22.45.	- صا 5	a Receivers	1		
				··-··		
			-			
,						
	1	I				

APPENDIX B

Analytical Laboratory Reports

Laboratory Report Project Overview

Laboratory:

Lab Report Number: Project Name:

Work Order Number: Control Sheet Number:

Bace Analytical, Windsor, CA 4617 18155 SONOMA HIGHWAY 617.070 NA

•
ū
Ε
Ε
\supset
ഗ
T
Q
Ω
(I)

f										
Sampid	Labsampid	Mtrx	ပ္မ	Anmcode	Mtrx QC Anmoode Exmoode Logdate Extdate	Logdate	Extdate	Anadate Lablotcti	Labioteti	Run Sub
C-JAWA	4617-1	×	လ	CS 8260FAB	SW5030B	08/04/200	08/07/200	08/07/200	SW5030B 08/04/200 08/07/200 08/07/200 20050807C	43
7-40101						2	z,	ιΩ		
MANALA	4617-2	8	SS	CS 8260FAB	SW5030B	08/04/200	08/07/200	08/07/200	SW5030B 08/04/200 08/07/200 08/07/200 20050807C	44
						5	5	5		
	4612-1	≥	S	8260FAB	SW5030B	11	08/08/200	08/08/200 08/08/200	20050807C	33
							2	2		
	A617MB	M	18	LB1 8260FAB	SW5030B	11	08/08/200	08/08/200 08/08/200	20050807C	29
		:					5	دی		
	4617MS	Α	MS	MS1 8260FAB	SW5030B	11	08/08/200	08/08/200	20050807C	14
	2						2	ις.		
	4617SD	8	SD1	SD1 8260FAB	SW5030B	11	08/08/200	08/08/200 08/08/200	20050807C	42
	} :						5	5		

Lab Report No.: 4617 Date: 09/14/2005

Page: 1

Project Name: Project No:	18155 SONOMA 617.070		•	OCs by GC/MS F 3260FAB SW5030B	Fuel Additive	s Plus E	BTEX	
Field ID:	MW-2		Lab Samp II): 4617-1				
Descr/Location:	MW-2		Rec'd Date:	08/04/2005				
Sample Date:	08/04/2005		Prep Date:	08/07/2005				
Sample Time:	0925		Analysis Dat	e: 08/07/2005				
Matrix:	Water		QC Batch:	20050807C				
Basis:	Not Filtered		Notes:					
Analyte		Det Limit	Rep Limit	Note	Result	Units	Pvc Dil	
1,2-Dichloroetha	ne	0.30	0.50 PQL		1.32	UG/L	1	
	ND INTERNAL STANI	DARD RECOV	ERIES:					
4-Bromofluorobe			86-118 SLS	Α	95%			
Toluene-d8			88-110 SLS	A	101%			
Dibromofluorome	ethane		86-115 SLS	Α	104%			

Approved by: William & Poty

Date: <u>9/14/05</u>

Lab Report No.: 4617 Date: 09/14/2005

Page: 2

Project Name: Project No:	18155 SONOMA 617.070		Analysis: Method: Prep Meti	820	OCs by GC/MS F 60FAB V5030B	uel Additive	s Plus E	BTEX	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	MW-4 MW-4 08/04/2005 1010 Water Not Filtered		Lab Samp Rec'd Dat Prep Date Analysis I QC Batch Notes:	te: e: Date:	4617-2 08/04/2005 08/07/2005 08/07/2005 20050807C				
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
1,2-Dichloroetha	ne	0.30	0.50 P	QL		ND	UG/L	1	
SURROGATE A 4-Bromofluorobe	ND INTERNAL STANI	OARD RECOV	86-118 S	SLSA		95%			
Toluene-d8 Dibromofluorome	ethane			SLSA SLSA		101% 105%			

Approved by: William & Conf.

Date: 9/14/05__

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4617 Date: 09/14/2005

Page: 3

QC Batch:

20050807C

Analysis: VOCs by GC/MS Fuel Additives Plus BTEX

Matrix:

Water

Method:

8260FAB

Lab Samp ID: 4617MB

Prep Meth: SW5030B

Analysis Date: 08/08/2005

Prep Date: 08/08/2005

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
1.2-Dichloroethane	0.30	0.50	PQL		ND	UG/L	1	
SURROGATE AND INTERNAL S 4-Bromofluorobenzene	STANDARD RECOV	ERIES: 86-118	SLSA		99%			1
Toluene-d8		88-110	SLSA		100%			1
Dibromofluoromethane		86-115	SLSA	ı	100%			

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary

Bace Analytical, Windsor, CA

Page: 4

Lab Report No.: 4617 Date: 09/14/2005

20050807C Lab Samp ID: 4617MS Water QC Batch: Matrix:

20SLSP 20SLSP 20SLSP 20MSP Project Name: Lab Generated or Non COE Sample Project No.: Lab Generated or Non COE Sample Field ID: Lab Generated or Non COE Sample Acceptance Criteria SLSA SLSA SLSA MSA % Rec 118-86 1.9 | 115-86 130-70 0.00 110-88 -110 104 5.6 MS DMS RPD % Recoveries 9 104 94.0 95.0 4612-1 102 9 Lab Ref ID: PERCENT PERCENT PERCENT Units UG/L DMS 10.4 Spike Result MS DM 95. 104. 11.0 102. 100. 94. Sample Result 읖 96. DMS 10.0 100 100. 100. Spike Level MS 10.0 100. 100. Analysis Method 8260FAB 8260FAB 8260FAB 8260FAB Not Filtered 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane Toluene-d8 Analyte Basis:

RPD

Chain-of Custody Form

C.O.C. No. 11781	Remarks: STANDRRD TAT	1-41014	-2							- (specify)	Brunsing Associates, Inc. P.O. Box 588	5803 Skylane Blvd., Suite A Windsor, CA 95492 (707) 838-3027 (707) 838-4420 fax
Analysis										Preservation: A - HCL; B - H2SO4; C - NaOH: D - HNO3: E - Ice; F - (specify)	13:50 STANDARD TAT	oration by: A The DIANA DICKERSON
4. Grups		Time Sample tainers N (24 Hour) Type	->							Preservatii	2#7 (Sup	of for Lab
Project # Project Name (ALLO	(0)	Sar	8.+.05 AW-7							Laboratory:	Relinquished by: Well (signed)	Relinquishëd by: (signed) Relinquished by: (signed)

Laboratory Report Project Overview

Lab Report Number: Laboratory:

Project Name: Work Order Number: Control Sheet Number:

Bace Analytical, Windsor, CA 4687

18155 SONOMA HIGHWAY 617.070 NA

Report :	Report Summary										
Labreport	Sampid	Labsampid	Mtrx	မ္တ	Anmcode	Mtrx QC Anmcode Exmcode Logdate Extdate	Logdate	Extdate	Anadate Lablotcti	Lablotcti	Run Sub
4687	MW-2	4687-1	Μ	SS	CS 8260FAB	SW5030B	11/10/200	11/15/200 5	11/15/200	SW5030B 11/10/200 11/15/200 11/15/200 20051115B	14
4687	MW-4	4687-2	×	SS	CS 8260FAB	SW5030B	11/10/200	11/15/200	11/15/200	11/10/200 11/15/200 11/15/200 20051115B	17
		4686-1	8	2	NC 8260FAB	SW5030B	, ,	11/15/200	11/15/200	11/15/200 11/15/200 20051115B	10
		4687MB	×	LB1	LB1 8260FAB	SW5030B	11	5 11/15/200	5 11/15/200	5 11/15/200 11/15/200 20051115B	8
		4687MS	Μ	MS1	MS1 8260FAB	SW5030B	11	5 11/15/200	5 11/15/200	5 5 11/15/200 11/15/200 20051115B	12
		4687SD	Α.	SD1	SD1 8260FAB	SW5030B	11	5 11/15/200 5	5 11/15/200 5	5 5 11/15/200 11/15/200 20051115B 5 5	13

Lab Report No.: 4687 Date: 11/22/2005

Page: 1

Project Name: Project No:	18155 SONOMA 617.070	,	Analysis: Method: Prep Meth	82	OCs by GC/MS F 60FAB V5030B	uel Additive	s Plus E	BTEX	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	MW-2 MW-2 11/10/2005 1034 Water Not Filtered		•	e: : :: :::	4687-1 11/10/2005 11/15/2005 11/15/2005 20051115B				
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
1,2-Dichloroetha	ne	0.30	0.50 P	QL		1.74	UG/L	1	
	ND INTERNAL STAN	OARD RECOV	ERIES: 86-118 S	LSA		96%			1
Toluene-d8			88-110 S	LSA		99%			1
Dibromofluorom	ethane		86-115 S	LSA		94%			1

Lab Report No.: 4687 Date: 11/22/2005

Dibromofluoromethane

Page: 2

Project Name: Project No:	18155 SONOMA 617.070		Analysis Method: Prep Me	82	Cs by GC/MS F 60FAB V5030B	uel Additive	s Plus E	BTEX	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	MW-4 MW-4 11/10/2005 0933 Water Not Filtered		Lab San Rec'd Da Prep Da Analysis QC Bato Notes:	ate: te: Date:	11/10/2005				
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
1,2-Dichloroetha	ine	0.30	0.50	PQL		ND	UG/L	1	
	ND INTERNAL STAN	DARD RECOV	ERIES: 86-118	SLSA		96%			1
Toluene-d8			88-110	SLSA		99%			1
Dibromofluorom	ethane		86-115	SLSA		94%			1

Approved by: Walley of John

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4687 Date: 11/22/2005

Page: 3

QC Batch:

20051115B

Analysis:

VOCs by GC/MS Fuel Additives Plus BTEX

Matrix:

Water

Method:

8260FAB

Lab Samp ID: 4687MB

Prep Meth: SW5030B

Prep Date: 11/15/2005

Analysis Date: 11/15/2005 Not Filtered

Notes:

Dasis. ***********************************								
Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
1,2-Dichloroethane	0.30	0.50	PQL		ND	UG/L	_1	
SURROGATE AND INTERNAL ST 4-Bromofluorobenzene	ANDARD RECOV	ERIES: 86-118	SLSA		97%			1
Toluene-d8		88-110	SLSA		100%			1
Dibromofluoromethane		86-115	SLSA	·	94%			1

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary

Bace Analytical, Windsor, CA

Page: 4

Lab Report No.: 4687 Date: 11/22/2005

					+				1
ample ample ample	ance	ā	RPD	20 MSP	0000	203L3P	20SLSP	20SLSP	
Lab Generated or Non COE Sample Lab Generated or Non COE Sample Lab Generated or Non COE Sample 4686-1	Acceptance	Criteria	Sec	MSA		SLSA	SLSA	S. S.	
or Non for Non for Non			% Rec	1.6 130-70 MSA		1.1 118-86	1.1 115-86 SLSA	AS 12.88 SLSA	3
eneratec eneratec eneratec		veries	MS DMS RPD	1 1 6	?			000	3
: Lab Ge Lab Ge Lab Ge 4686-1		% Recoveries	MS DN	888 874	5	94.0 95.0	94.0 95.0	00	33.0
Project Name: Lab Generated or Non COE Sample Project No.: Lab Generated or Non COE Sample Field ID: Lab Generated or Non COE Sample Lab Ref ID: 4686-1			Units	101	OGIL	PERCENT	PERCENT	H C	PERCEN
		Spike Result	DMS	74.0	0.74	95.	95		99.
		Spike	MS		8.88	94.	94	Š	99.
		Sample	Secult Recult	10001	2	94	. 6	i b	99.
		Spike Leytel	o Level	2	10.0	100		.00	100.
		100	ndo vy	S	10.0	90,	9 9	100.	100.
		مزمراصد	Mothod	ואומווסמ	8260FAB	O VENERA D	OZOULAB	8260FAB	8260FAB
20051115B Water D: 4687MS Not Filtered					ine ine		enzene	ethane	
QC Batch: 20051111 Matrix: Water Lab Samp ID: 4687MS Basis: Not Filter				Analyte	1 2-Dichloroethane	, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	4-Bromoffuorobenzene	Dibromofluoromethane	Toluene-d8

Chain-of Custody Form

C.O.C. No. 11852 Remarks: 2-week-tar	4687-1		F - (specify)	Brunsing Associates, Inc. P.O. Box 588 5803 Skylane Blvd., Suite A Windsor, CA 95492 (707) 838-3027 (707) 838-4420 fax
Analysis			1 <u>C</u> L: B - H2SO4: C - NaOH: D - HNO3: E - Ice:	1325 Remarks: 2-week TAT ATTU: DIANA DICKERSON
	WATER 2		Preservation: A - HCL: B - H2SO4:	Pate/Time Received by: 110000 Date/Time Received by: 110000 Date/Time (signed) (Signed) (Signed)
Project Mame CarLO Boos. 18155 Sonoma Hichamy 18055 Hor Spance, CA. L.P. No. Sampler Signature L.P. No. Sampler Signature Sampler Signature Sampler Signature	25 Mw-2 Mw-4		Laboratory:	Mi Lot